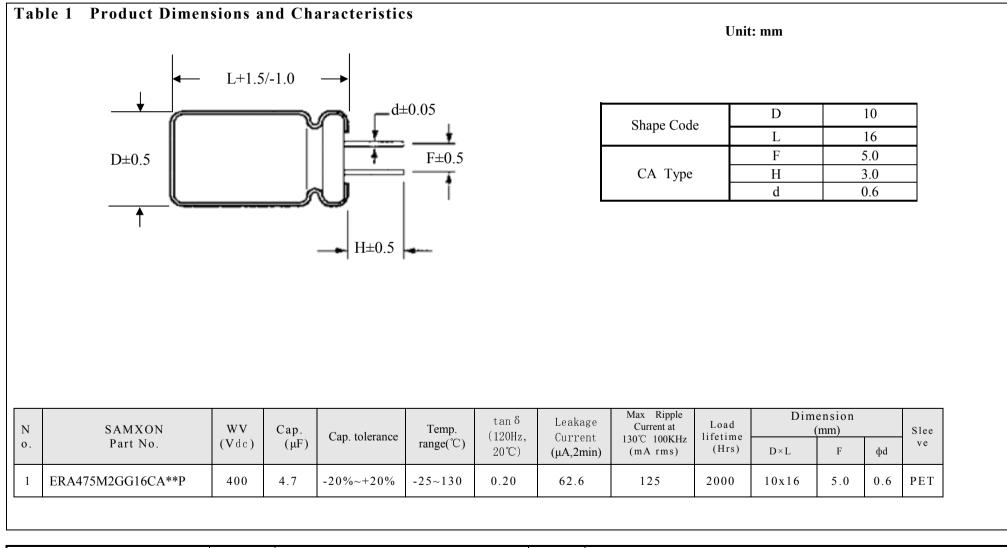


SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): DATE: (日期):2017-01-16


CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: RA 400V4.7 μ F(ϕ 10X16)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPLIER PREPARED CHECKED		CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

		SPECIFI				ALTERN	ATION HIS	STORY
Rev.	Date	RA S Mark		ige	Contents	Purpose	Drafter	Approver
1.0. V.	Date	IVIGIN	10	·5·	Contents	1 01 0050	Diatter	
	Varrian		01				Darr	
	Version		01				Page 1	-

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION	
	RA SERIES	

Version 01	Page	2
------------	------	---

C O N T E N T S									
	Sheet								
. Application	4								
. Part Number System	4								
. Construction	5								
. Characteristics	5~10								
1 Rated voltage & Surge voltage									
.2 Capacitance (Tolerance)									
.3 Leakage current									
$.4 \tan \delta$									
.5 Terminal strength									
.6 Temperature characteristic									
.7 Load life test									
4.8 Shelf life test									
1.9 Surge test									
1.10 Vibration									
1.11 Solderability test 1.12 Resistance to solder heat									
1.13 Change of temperature									
1.14 Damp heat test									
1.15 Vent test									
.16 Maximum permissible (ripple current)									
. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	d 11								
Attachment: Application Guidelines	12~15								

	Version	01		Page	3
--	---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES

SAMXON

1. Application

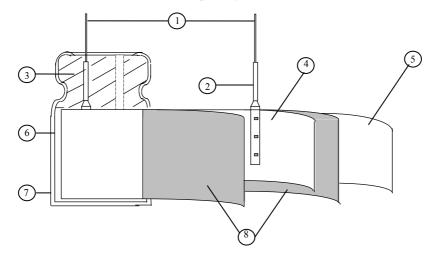
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 н D11 S 0 5 м 1 TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co RR For internal use only 3 B .5 1 4 C Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 10 G 12.5 I 13.3 J 13.5 V 14.4 4 14.5 A 16.5 7 18.5 8 20 M 225 O 300 P 255 O 304 W 335 Q 40 R 422 4 ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EGI м 20 1D ±20 105 3.5mm Pitch тν Sleeve Material 1 Cod 듣증 25 EGK EGE EGD 1E тс PET Р 30 11 5.0mm Pitch 2.2 225 Ν ±30 32 13 Lead Cut & Form 35 ERS 3.3 335 1V -40 w ERF Z2 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z 40 1G СВ-Туре СВ 42 4.7 475 1**M** -20 0 А ER 50 1H ERI СЕ-Туре CE 10 106 57 1L ERD -20 +10 С 63 1J HE HE-Type 45 51 33.5 76 80 90 100 22 226 71 **1**S ER. 75 1**T** 6 -20 +40 ERE × KD-Type ĸD 336 ERC EFA ENP 33 80 1K 85 1R -20 +50 FD-Type FD s 47 476 90 19 ENH 100 2A 4.5 5 455 5 065 4 54 7 07 7 77 7 77 2 T2 1 11 1 11 5 1A 2 12 5 1B 3 13 5 1C 0 20 5 25 5 2J 0 30 5 3A 5 3E -10 0 ЕН-Туре EΗ в 107 100 120 20 5.4 EAP EQP EDP 125 2B PCB Termial 227 -10 +20 220 v 150 2Z 160 2C 10 ETP EHP EUP EKP EEP sw -10 +30 330 337 Q 180 2P 11.5 200 2D Snap-in sx 12 2.5 13 3.5 477 470 12 -10 +50 215 22 т 13.L 20 2; EFF 220 2N sz 2200 228 23 -5 +10 230 EVP EGP EWR EWU EWT EWX EWF EWS EWH EWL EWB VSS Е 250 2E Lug SG 29.5 22000 229 -5 +15 275 2Т F 3 300 21 05 33000 339 -5 +20 310 2R 35 G 50 80 1L 1K 1M 1P 06 315 2F 47000 479 330 2U 0 +20 R Т5 350 2V 100000 10T Screw 360 2X 0 +30 0 т6 VNS VKS VKM VRL VRL 375 2Q 150000 15T 40 50 10 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 2G 400 220000 22T +5 +15 420 2M z D6 VZS 450 2W 330000 ззт +5 +20 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

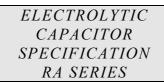
Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		0	

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES


	ITEM					PERF	FORM	IANCI	Ξ			
	Rated voltage	WV (V.DC)	WV (V.DC) 6.3 10 16 25 3		35	50	63	100				
	(WV)	SV (V.DC)	8	13		20		32	44	63	79	125
4.1	Second	WV (V.DC)	160	200	22	0	250	350	400	420	450	
	Surge voltage (SV)	SV (V.DC)	200	250	27		300	400	450	470	500	
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requend oltage `empera	iture	: No : 20 <u>-</u>	±2℃	e thar	n 0.5Vr				
4.3 Leakage current $\begin{array}{ c c c c c } \hline < \mathbf{Condition} > & \mathbf{Connecting the capacitor with a protective resistor } (1 k \Omega \pm 10 \Omega) in service minutes, and then, measure Leakage Current. \\ \hline < \mathbf{Criteria} > & \mathbf{Refer to Table 1} \end{array}$							eries for 2					
4.4	tan δ	Condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperat Criteria> Refer to Table 1							ature.			
						rubber) fo within 2~2						

Version	01	rage	6
		•	

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES

		<con< th=""><th>dition></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></con<>	dition>									
		Γ	STEP	Testing Temperature(°C)			Time					
			1	20 ± 2		Time	Time to reach thermal equilibrium			m		
			2		-40(-25				thermal e	*		
			3		20±				thermal e	•		
		F	4		130±				thermal e			
		-	5		$\frac{130}{20\pm}$		-		thermal e			
		<crit< td=""><td>-</td><td></td><td>20 _</td><td>2</td><td>THILE</td><td>to reach</td><td></td><td>quinoriu</td><td>11</td><td></td></crit<>	-		20 _	2	THILE	to reach		quinoriu	11	
				ha with	in tha lir	nit of Item	4 4Tha 1		irrant mag	ourod ch	all not	
						ied value.	+.411101	eakage ci		isuicu sii	all llot	
	Temperature					in the limit	ofItom	1 ATha la	akaga aur	ront chal	not mo	ro
	characteristi		the specif				or nem.	+.4 I lie le	akage cui	i ciit siiai	i not mo	
4.6	cs		-			e (z) ratio sł	all not e	vceed the	value of	the follow	wing tab	le
			ng Voltag		10	16	25	35	50	63	100	
			$5^{\circ}C/Z+20$		3	2	23	2	2	2	2	_
			$\frac{3 \text{ C/Z}+20}{0 \text{ C/Z}+20}$		6	4	3	3	3	3	3	
		Z-40	$0 C/Z \tau 20$		0	4	3	3	3	5	5	
			1	(7.7)	1.50	• • • •			100	4.50	1	
			ng Voltag		160	200	250	350	400	450	-	
			5°C/Z+20		3	3	3	5	6	6]	
		For ca	pacitance	e value	> 1000 µ	F, Add 0.5	-					
							-)µF for Z	∠-40°C/Z	+20℃.	
		Capaci	itance, tar	nδ, and	d impeda	nce shall b	e measui	red at 120)Hz.			
1												
		~										
			dition>			112 1	1 11	•,	• , 1			
		Accor	ding to I			4.13 method		-		-		
		Accor 130°C	to I to ± 2 with	n DC b	ias volta	ge plus the	rated rip	ple curre	nt for Ta	ble 1. (7	The sum	of
		Accor 130°C DC an	The second seco	n DC b beak vo	ias volta ltage sha	ge plus the all not excee	rated rip ed the rat	ple curre ed worki	nt for Ta	ble 1. (T e) Then t	The sum he produ	of uct
		Accor 130°C DC an should	rding to II $\Sigma \pm 2$ with and ripple p d be teste	n DC b beak vo ed after	ias volta ltage sha 16 houi	ge plus the Ill not excee s recoverir	rated rip ed the rat	ple curre ed worki	nt for Ta	ble 1. (T e) Then t	The sum he produ	of uct
	Load	Accor 130°C DC an should should	rding to II 2 ± 2 with ad ripple p d be tested d meet the	n DC b beak vo ed after	ias volta ltage sha 16 houi	ge plus the Ill not excee s recoverir	rated rip ed the rat	ple curre ed worki	nt for Ta	ble 1. (T e) Then t	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should <crit< b=""></crit<>	rding to II 2 ± 2 with and ripple p and be tested and meet the teria>	n DC b beak vo ed after e follow	ias volta ltage sha 16 hour ving table	ge plus the all not exceed rs recovering e:	rated rip ed the rat ng time a	ple curre red worki at atmosp	nt for Ta	ble 1. (T e) Then t	The sum he produ	of uct
4.7		Accor 130°C DC an should should <crit< b=""></crit<>	ding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris	n DC b beak vo d after e follow	ias volta; ltage sha 16 hou ving table 11 meet tl	ge plus the ill not exceed rs recovering e: ne following	rated rip ed the rat og time a g require	ple curre red worki at atmosp	nt for Ta ng voltag heric cor	ble 1. (T e) Then t	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should <crit< b=""></crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage	n DC b beak vo ed after e follow stic sha curren	ias voltaj Itage sha 16 hour ving table <u>Il meet tl</u> t	ge plus the Ill not exceed rs recovering e: ne following Value in	rated rip ed the rat og time a <u>g require</u> 4.3 shall	ple curre ed worki at atmosp ments. be satisf	nt for Taing voltage oheric cor	ble 1. (T e) Then t	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should <crit< b=""></crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita	n DC b beak vo ed after e follow stic sha curren	ias voltaj Itage sha 16 hour ving table <u>Il meet tl</u> t	ge plus the ill not exceed rs recovering e: ne following Value in Within ±	rated rip ed the rat ag time a g require 4.3 shall 30% of	ple curre ed worki at atmosp ments. be satisf initial va	nt for Taing voltage oheric cor ied alue.	ble 1. (1 e) Then t aditions.	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should <crit< b=""></crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet that teria> haracteris Leakage Capacita tan δ	n DC b beak vo d after e follow stic sha curren unce Ch	ias voltaj Itage sha 16 hour ving table <u>Il meet tl</u> t	ge plus the ill not excee rs recoverin e: ne followin Value in Within <u>±</u> Not more	rated rip ed the rat og time a <u>g require</u> 4.3 shall 30% of than 30	ple curre ed worki at atmosp ements. be satisf initial va 0% of the	nt for Taing voltage oheric cor ied alue.	ble 1. (Te) Then to additions.	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should <crit< b=""></crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita	n DC b beak vo d after e follow stic sha curren unce Ch	ias voltaj Itage sha 16 hour ving table <u>Il meet tl</u> t	ge plus the ill not exceed rs recovering e: ne following Value in Within ±	rated rip ed the rat og time a <u>g require</u> 4.3 shall 30% of than 30	ple curre ed worki at atmosp ements. be satisf initial va 0% of the	nt for Taing voltage oheric cor ied alue.	ble 1. (Te) Then to additions.	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should Crit The c	ding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita tan δ Appeara	n DC b beak vo d after e follow stic sha curren unce Ch	ias voltaj Itage sha 16 hour ving table <u>Il meet tl</u> t	ge plus the ill not excee rs recoverin e: ne followin Value in Within <u>±</u> Not more	rated rip ed the rat og time a <u>g require</u> 4.3 shall 30% of than 30	ple curre ed worki at atmosp ements. be satisf initial va 0% of the	nt for Taing voltage oheric cor ied alue.	ble 1. (Te) Then to additions.	The sum he produ	of uct
4.7	life	Accor 130°C DC an should should Crit The c	rding to II 2 ± 2 with ad ripple I d be tested d meet the teria> haracteris Leakage Capacita tan δ Appeara	n DC b beak vo ed after e follow stic sha curren unce Ch	ias volta iltage sha 16 hour ving table <u>ll meet th</u> nange	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha	rated rip ed the rat g time a g require 4.3 shall 30% of than 30 ill be no	ple curre ed worki at atmosp <u>ements.</u> be satisf initial va 0% of the leakage o	nt for Taing voltage oheric cor ied alue. e specified of electrol	ble 1. (1 e) Then t nditions.	The sum he produ The res	of uct sult
4.7	life	Accor 130°C DC an should should Crit The c	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita tan δ Appeara pacitors a	n DC b beak vo ed after e follow stic sha curren nnce Ch nce	ias volta iltage sha 16 hour ving table Il meet th t nange	ge plus the ill not excee rs recoverin e: me followin Value in Within <u>+</u> Not more There sha	rated rip ed the rat og time a <u>g require</u> 4.3 shall 30% of than 30 ill be no	ple curre ed worki at atmosp ements. be satisf initial va 0% of the leakage of ied at a	nt for Taing voltage oheric cor ied alue. e specified of electrol temperatu	ble 1. (Terminal for the second secon	The sum he produce The res	for
4.7	life	Accor 130°C DC an should should <crit< b=""> The c Con The cap 1000+</crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita tan δ Appeara pacitors a -48/0 hou	n DC b beak vo d after e follow stic sha curren nnce Ch nce	ias volta iltage sha 16 hour ving table <u>ll meet th</u> ange	ge plus the ill not exceed rs recovering re: ne following Value in Within ± Not more There sha with no volt his period	rated rip ed the rat ag time a g require 4.3 shall 30% of than 30 ill be no age appliche capa	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha	nt for Taing voltage observed to the specified of electrol temperatual be rem	ble 1. (1 e) Then t nditions. d value. yte. re of 10: noved from	The sum he produce The res $5\pm 2^{\circ}C$ for the t	for
4.7	life test	Accor 130°C DC an should should <crit< b=""> The c Con The cap 1000+ chamb</crit<>	rding to II 2 ± 2 with ad ripple p d be tested d meet the teria> haracteris Leakage Capacita tan δ Appeara adition> pacitors a -48/0 hou ber and be	n DC b beak vo d after e follow stic sha curren ince Ch nce are ther urs. Fol e allowe	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange	ge plus the ill not exceed rs recovering e: Not more There sha with no volt his period pilized at ro	rated rip ed the rat ag time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp	ements. be satisf initial va 0% of the leakage of ied at a citors sha	nt for Ta ng voltag oheric cor ied alue. e specified of electrol temperatu all be rem or 4~8 ho	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: urs. Next	The sum he product The res $5\pm 2^{\circ}C$ to the the the the shore set of the sum the sum	for test
	life test Shelf	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha with no volt his period to pilized at ro g resistor(1	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for for
4.7	life test Shelf life	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: Not more There sha with no volt his period pilized at ro	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for
	life test Shelf	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha with no volt his period to pilized at ro g resistor(1	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for
	life test Shelf life	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha with no volt his period to pilized at ro g resistor(1	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for
	life test Shelf life	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha with no volt his period to pilized at ro g resistor(1	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for
	life test Shelf life	Accor 130°C DC an should should <crit< b=""> The c <con< b=""> The cap 1000+ chamb be cor</con<></crit<>	rding to II $\Sigma \pm 2$ with ad ripple p d be tested d meet the teria> characteris Leakage Capacita tan δ Appeara dition> pacitors a -48/0 how ber and be meeted to	n DC b beak vo ed after e follow stic sha curren unce Ch nce are ther urs. Fol e allowe o a serie	ias volta iltage sha 16 hour ving table <u>ll meet th</u> t nange n stored v lowing t ed to stat es limitin	ge plus the ill not exceed rs recovering e: me following Value in Within ± Not more There sha with no volt his period to pilized at ro g resistor(1	rated rip ed the rate of the rate g time a g require 4.3 shall 30% of than 30 ill be no age appliche capa om temp $k \pm 100$	ple curre ed worki at atmosp ments. be satisf initial va 0% of the leakage of ied at a citors sha perature fo 2) with I	nt for Taing voltage observed to the second definition of the second second second second second second second temperature and the second seco	ble 1. (1 e) Then t nditions. l value. yte. ure of 10: noved fro urs. Next voltage	The sum he product The res $5\pm 2^{\circ}C$ to the t t they shapplied	for for

Version	01		Page	7
---------	----	--	------	---

1			
		<criteria></criteria>	
			neet the following requirements.
	Shelf	Leakage current	Value in 4.3 shall be satisfied
4.8	life	Capacitance Change	Within $\pm 30\%$ of initial value.
1.0	test	tan δ	Not more than 300% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors are	stored more than 1 year, the leakage current may
		increase. Please apply voltage	through about 1 k Ω resistor, if necessary.
4.9	Surge test		e 15~35℃.
4.10	Vibration test	over voltage as often applied. Condition> The following conditions sha perpendicular directions. Vibration frequency ran Peak to peak amplitude Sweep rate Mounting method:	Il be applied for 2 hours in each 3 mutually nge : $10Hz \sim 55Hz$: $1.5mm$: $10Hz \sim 55Hz \sim 10Hz$ in about 1 minute reater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES

					<u> </u>
		<condition></condition>			
		The capacitor shall be test	-	conditions:	
		Soldering temperature	: 245±3°C		
	Caldanah ilita	Dipping depth	: 2mm		
4.11	Solderability	Dipping speed	: 25±2.5mm	/s	
	test	Dipping time	: 3±0.5s		
		<criteria></criteria>		0.0.70/ 0.1 0	1 .
		Coating quality	A minimum immersed	n of 95% of the surfac	e being
			miniersed		
		<condition></condition>			
		Terminals of the capac	itor shall be immersed i	nto solder bath at	
		260 ± 5 °C for 10 ± 1 second	onds or $400 \pm 10^{\circ}$ C for 3	$^{+1}_{-0}$ seconds to 1.5~2.0	mm from the
		body of capacitor.		-0	
	Resistance to		l be left under the norma	al temperature and nor	mal humidity
4.12	solder heat	for 1~2 hours before m		1	5
	test	<criteria></criteria>			
		Leakage current	Not more than the	specified value.	
		Capacitance Change	Within $\pm 10\%$ of		
		tan δ	Not more than the		_
		Appearance	There shall be no l	eakage of electrolyte.	
		<condition></condition>			
		Temperature Cycle:Accor	ding to IEC60384-4No.	4.7methods, capacitor	shall be
		placed in an oven, the con			
		Te	mperature	Time	
		(1)+20℃		≤ 3 Minutes	
	Change of	(2)Rated low tempera	ture (-40°C) (-25°C)	30 ± 2 Minutes	
4.13	Change of temperature	(3)Rated high temper	ature (+130°C)	30 ± 2 Minutes	
7.15	test	(1) to (3)=1 cycle, tot	× /		
		<criteria></criteria>			
		The characteristic shall me	eet the following require	ement	
		Leakage current	Not more than the s]
		tan δ	Not more than the s	pecified value.	
		Appearance	There shall be no le	akage of electrolyte.	
		<condition></condition>		- ·	-
		Humidity Test:			
		According to IEC60384	-4No.4.12methods. can	acitor shall	
		be exposed for 500 ± 81	-		
		$40\pm2^{\circ}$ C, the characteris	-		ent.
		<i>,</i>	C	6 1	
4.1.4	Damp heat	<criteria></criteria>			
4.14	test	Leakage current	Not more than the spe	cified value.	ן ר
		Capacitance Change	Within $\pm 20\%$ of initial		1
		tan δ	Not more than 120% of		1
		Appearance	There shall be no leak		1
		r p			J

ELECTROLYTIC CAPACITOR SPECIFICATION RA SERIES

4.15	Vent test	<condition> The following test only apple with vent. D.C. test The capacitor is connected current selected from below <table 3=""> Diameter (mm) DC (22.4 or less Over 22.4 Criteria> The vent shall operate with pieces of the capacitor and/or</table></condition>	with its p v table is a <u>Current (A</u> 1 10 no dange	oolarity rev applied.	ersed to a I	DC power s	ource. Then a
4.16	Maximum permissible (ripple current)	$<$ Condition>The maximum permissible at 120Hz and can be appl Table-1The combined value of D rated voltage and shall notFrequency Multipliers: \bigcirc Coefficient \bigcirc Coefficient \bigcirc Cap. (μ F) 4.7 Temperature CoefficientTemperature (°C)Factor	ied at ma: .C voltago ot reverse 120 0.20	kimum ope e and the p	rating temp	berature	

Version	01	Page	10

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
Heavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo com	npounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	Page	12
------------	------	----

SAMXON

(6)	Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas
	exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7)	Circuit Board patterns Under the Capacitor
(8)	Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. Screw Terminal Capacitor Mounting
(0)	Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.
	Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6	Electrical Isolation of the Capacitor
(1)	Completely isolate the capacitor as follows.
	Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7	The Product endurance should take the sample as the standard.
1.8	If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9	Capacitor Sleeve
	The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.
	The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
	CAUTION!
	Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.
	(1) Provide protection circuits and protection devices to allow safe failure modes.
	(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
	apacitor Handling Techniques
	Considerations Before Using Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
	Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
	with a resistor with a value of about $1k\Omega$.
(3)	Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
	If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
(5)	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
	result.
	Capacitor Insertion
	Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
(3)	Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
	Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
	capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
23	Manual Soldering
(1)	Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
	f lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
	f a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
2.4	Flow Soldering
(1) I	Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
	Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
(3)1	Do not allow other parts or components to touch the capacitor during soldering.
2.5	Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
